Secular Variation of the Mode Amplitude-Ratio of the Double-Mode RR Lyrae Star NSVS 5222076 Dave Hurdis Toby Point Observatory Narragansett, RI Tom Krajci Astrokolkhoz Observatory Cloudcroft, NM 98th Annual Meeting of the AAVSO Newton, Massachusetts Saturday, November 17, 2009 ## **Project Motivation** - 1. From 2008 observations, Hurdis (2009) estimated the mode amplitude ratio, A_0/A_1 , to be about 1.4 for both the V and Ic bands. - 2. These estimates uncertain, but it was clear that the amplitude ratio was definitely less than Oaster, Smith & Kinemuchi's value of "approximately 2." - 3. Estimate made difficult by having caught only four good maxima over the fourteen nights of observation. Moreover, estimate method used was inexact. - 4. Clearly, more observations needed, both to verify the result, and to determine whether NSVS 5222076 is, perhaps, in the process of changing its dominant pulsation mode from fundamental to first-overtone. # **Project Objectives** - 1. Time-series observations of the RRd star, NSVS-5222076 in the V-band and I-band. - 2. Improve accuracy of period determination, by combining 2009 V-band observations with those of MSU (2005) and Hurdis (2008), thereby enlarging time-baseline. 3. Determine ratio of amplitudes, A_0/A_1 , of fundamental and first-overtone modes, for all three data sets and for both wavelength bands. # **RR Lyrae Stars** Population-II (very old) Progenitor mass ≈ 0.8 M **Evolved from MS to HB via RGB On Instability Strip** # **RR Lyrae Light Curve Shapes** Credit: *RR Lyrae Stars*, H. Smith, Figure 1.1, pg. 3 # Double-Mode RR Lyrae Stars Bailey Type (d) Double-mode RR Lyrae (RRd) stars pulsate in two independent modes, the fundamental and the 1st overtone. Usually (but not always) the 1st overtone amplitude is greater than the amplitude of the fundamental, so the light curve looks sinusoidal, like that of an RRc. #### **NSVS 5222076** Identified by Oaster (2005) in Northern Sky Variability Survey (NSVS) data as possible new double-mode RR Lyr (RRd) star. RRd nature confirmed by Oaster, Smith & Kinemuchi (2006). Unusual among RRd stars in that its fundamental mode is the dominant pulsation mode, <u>not</u> the 1st overtone. Consequently, its light curve looks more like an RRab than an RRc. NSVS 5222076 is a field star, conveniently located for Northern Hemisphere observers: α (2000)= 15:46:26 δ (2000)= +44:18:47 Located in Bootes, and not far from M-3 and M-13. #### **Field of NSVS 5222076** # CHECK1: GSC-03060-00055 V = 13.576; I = 12.810 V - I = 0.766 NSVS 5222076 Calibration Credit: A. Henden, Sonoita Observatory, Apr 2008 #### **NSVS 5222076 Observations** Astrokolkhoz (Астроколхоз) Observatory, Cloudcroft, NM Wright28, Celestron C11 SCT SBIG ST-7XME CCD Camera Pixels binned 2x2 to give 382 x 255 Astrodon, Johnson-Cousins Interference Filter Set #### **NSVS 5222076 Observations** **Toby Point Observatory, Narragansett, RI** Meade 40-cm LX-200 SCT SBIG ST-8XME CCD Camera Pixels binned 2x2 to give 765 x 510 Custom Scientific, Johnson-Cousins (Bessel) Filter Set # **Spring 2009 Observations of NSVS 5222076** 1,482 V-Band Observations 1,458 I-Band Observations between JD 2,454,883 (2009 Feb 20-21) and JD 2,455,023 (2009 Jul 10-11) # PHASE PLOT, V-FILTER #### NSVS 5222076, Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 # FUNDAMENTAL MODE, f₀, V-FILTER #### NSVS 5222076, f₀ Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 # 1ST OVERTONE MODE, f₁, V-FILTER #### NSVS 5222076, f₁ Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 # PHASE PLOT, I-FILTER #### NSVS 5222076, Phase Plot, I-Filter, Data of Hurdis & Krajci 2009 # FUNDAMENTAL MODE, f₀, I-FILTER #### NSVS 5222076, f₀ Phase Plot, I-Filter, Data of Hurdis & Krajci 2009 # 1ST OVERTONE MODE, f₁, I-FILTER #### NSVS 5222076, f₁ Phase Plot, I-Filter, Data of Hurdis & Krajci 2009 #### IMPROVED PERIOD DETERMINATION We combined our 2009 V-band observations with those of MSU (2005) and Hurdis (2008), thereby creating a combined time baseline of 1,609-days. We have determined the pulsation periods to be as follows: Fundamental Period, $P_0 = 0.494050 \pm 0.000037$ day 1st Overtone Period, $P_1 = 0.366894 \pm 0.000010$ day ## Least-Squares Fit of 2009 V-Band Light Curve with PERIOD04 #### PERIOD04 fit to 2009 V-band data. | Frequency | Amplitude | |--------------------------------|-----------| | (cycles/day) | (mag) | | 2.02409 (=f ₀) | 0.165 | | 2.72558 (=f ₁) | 0.112 | | 2f ₀ | 0.070 | | $f_0 + f_1$ | 0.032 | | $f_1 - f_0$ | 0.031 | | 3f ₀ | 0.029 | | $2f_0 + f_1$ | 0.028 | | 4f ₀ | 0.023 | | 5f ₀ | 0.015 | | 2f ₁ | 0.015 | | $\mathbf{4f_0} + \mathbf{f_1}$ | 0.011 | | $3f_0 + f_1$ | 0.011 | | 6f ₀ | 0.005 | #### PERIOD04 fit to 2009 I-band data. | Frequency | Amplitude | |----------------------------|-----------| | (cycles/day) | (mag) | | 2.02409 (=f ₀) | 0.107 | | 2.72558 (=f ₁) | 0.070 | | 2f ₀ | 0.051 | | 3f ₀ | 0.018 | | $2f_0 + f_1$ | 0.017 | | $f_0 + f_1$ | 0.016 | | $f_1 - f_0$ | 0.015 | | 4f ₀ | 0.012 | | 2f ₁ | 0.012 | | $3f_0 + f_1$ | 0.008 | | $4f_0 + f_1$ | 0.007 | | 3f ₁ | 0.007 | | 4f ₁ | 0.006 | | 6f ₀ | 0.005 | #### **Least-Squares Fit of 2009 V-Band Light Curve with PERIOD04** #### Combined Data Sets: Mich. St. 05, Hurdis 08, Hurdis & Krajci 09, V-Filter 2453400 2453600 2453800 2454000 2454200 2454400 2454600 2454800 2455000 2455200 Heliocentric Julian Date #### Time Variation of Amplitude Ratio, A_0 / A_1 , V-Filter 2453400 2453600 2453800 2454000 2454200 2454400 2454600 2454800 2455000 2455200 Heliocentric Julian Date #### Combined Data Sets: Hurdis 08, Hurdis & Krajci 09, I-Filter 2453400 2453600 2453800 2454000 2454200 2454400 2454600 2454800 2455000 2455200 Heliocentric Julian Date #### Time Variation of Amplitude Ratio, A₀ / A₁, I-Filter 2453400 2453600 2453800 2454000 2454200 2454400 2454600 2454800 2455000 2455200 Heliocentric Julian Date # Mode Switching of Double-Mode RR Lyrae Stars In the globular cluster, M3, a few RRd stars have been observed to undergo changes in the relative strengths of the two pulsation modes. In four such cases (M3-V79, V166, V200, and V251) switching from one mode being dominant to the other has been observed. These changes can occur rapidly, over the span of a single year. Such stars are believed to be undergoing rapid evolutionary changes. V79 exhibited an abrupt change in its fundamental period in 1897, and switched in 1992 from being a single-mode (fundamental) pulsator to a double-mode pulsator with dominant first-overtone (Clement & Goranskij, 1999). # **GLOBULAR CLUSTER, M3** Animated GIF credit: J. Hartman & K. Stanek # Mode Switching of Double-Mode RR Lyrae Stars "Blazhko-like" amplitude modulation has also been observed in V79 (Goranskij & Barsukova, 2007). Recent PERIOD04 analysis of combined 2008 and 2009 data sets for NSVS 5222076 by Matt Templeton showed evidence of "Blazhko-like" amplitude modulation. The "Blazhko-like" amplitude modulation in NSVS 5222076 is non-periodic. Could this behavior be further evidence of pulsation instability in NSVS 5222076, prior to an impending mode switch? # PHASE PLOT, V-FILTER #### NSVS 5222076, Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 # FUNDAMENTAL MODE, f₀, V-FILTER #### NSVS 5222076, f₀ Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 # 1ST OVERTONE MODE, f₁, V-FILTER #### NSVS 5222076, f₁ Phase Plot, V-Filter, Data of Hurdis & Krajci 2009 #### **SUMMARY** 1. The fundamental and 1st-overtone periods of NSVS 5222076 have been determined, with improved accuracy. They are $P_0 = 0.494050 \pm 0.000037 \, day$ $P_1 = 0.366894 \pm 0.000010 \, day$ - 2. In the V-band, the amplitude ratio, A_0/A_1 , of the fundamental and 1st-overtone modes is found to have declined from 1.93 in 2005 to 1.76 in 2008 to 1.48 in 2009. - 3. In the **I**-band, A₀/A₁ was 1.56 in 2008 and 1.52 in 2009. - 4. Continued monitoring of NSVS 5222076 is needed to catch the anticipated impending mode switch. ## **Field of NSVS 5222076**