GALEX & Optical Light Curves of LARPS

AAVSO November 7, 2009

Paula Szkody, Al Linnell, Richard Plotkin, Mark Seibert, Ryan Campbell, Tom Harrison, Steve Howell, Jon Holtzman

What the heck is a LARP?

LARP = Low Accretion Rate Polar

Polar $\dot{M}=10^{-11} \, M_{\odot}/yr$

LARP $\dot{M}=10^{-14} M_{\odot}/yr$

WD temperature in Polars ~ 11,000-14,000K

WD temperature in LARPS < 10,000K

Polar

LARP

The theory:

If there is little to no accretion, the white dwarf should be a uniform temperature and the UV light curve should be a flat line.

The Reality:

P=81 min B=14MG

Szkody,
Harrison,
Plotkin,
Howell,
Seibert,
Bianchi, Ap,
646, L147, 2006

GALEX NUV(1750-2800A)

EF Eri

Modeled with 9500K WD and 24,000K spot

Phase minimum light

Phase maximum light

Need another component

Ryan Campbell's cyclotron models with B=100 MG

So, is the orbital variation due to:

- 1) A hot spot on the white dwarf
- 2) Cyclotron at a high field

???????

Obtained GALEX data on 3 more systems with different magnetic fields and secondaries

Al Linnell modeled with 7900K WD with 2 10,000K spots

P=1.37 hr B=42 MG Sec=>M6

Modeled with 9500K WD with one 13000K spot

P=1.47 hr

B=7 MG

Sec = > L5 brown dwarf

Modeled with 9500K WD with single 14000K spot

Conclusions

- all WDs have enhanced emission even with no direct mass transfer
- fields of 7-70 MG are enough to funnel wind from secondary
- even system with brown dwarf secondary provides some wind
- 10,000-14,000 spots can approximate light curves but does not rule out cyclotron